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INTRODUCTION

Recently, wide-base passive systems of finding the
location of radiators have been a subject of increasing
interest. Here, we assume that in a wide-base system,
the distance between the nearest receiving points is
much greater than the wavelength of the accepted sig-
nal and commensurable with the range to the radiator.

The difference range-finding system may serve as
an example of wide-base systems. In this system, the
problem of finding the location of a radiator is usually
solved in two stages. At the first stage, the time delays
between the signals received by receivers located at dif-
ferent spatial points are estimated, and at the second
stage, the coordinates of the radiator are estimated on
the basis of the measured delays.

The united problem of estimating the location of a
radiator is considered in [1]. However, Chernyak per-
formed [2] the most complete study of this problem; he
constructed the optimum (with respect to the maxi-
mum-likelihood criterion) one-stage algorithm of esti-
mating the base delay vector, which is uniquely con-
nected with the coordinates of the radiator. This method
may be treated as an algorithm of estimation of the
coordinates themselves. Unlike this paper, where the
coordinates of the radiator are the measured parame-
ters, in [2], the vector of independent delays is taken as
a set of estimated parameters; the dimensionality of this
vector equals two or three, respectively, when the situ-
ation on a plane or in space is considered.

In this paper, we consider the one-stage algorithm of
optimum estimation of coordinates and the two-stage
coordinate meter, in which, at the first stage, the delays
are measured by the optimum maximum-likelihood
method, and at the second stage, the coordinates are
also estimated by an optimum method. We use a model
of a signal that differs from the method proposed in [2].
In fact, we assume that the differences of phases of sig-
nals between the first and other receiving points are
independent, rather than the differences of the

unknown phases of signals at inputs of receiving points.
We also consider a simpler heuristic technique of find-
ing the solution that coincides essentially with the one-
stage algorithm [2]; the difference is that, in our algo-
rithm, the maximum is determined with the help of
scanning in the space of coordinates and not in the
space of base delays. We propose a procedure and cal-
culate the potential accuracy for one- and two-stage
algorithms.

The analysis has shown that one- and two-stage
algorithms have identical accuracy when errors of mea-
surements are small. However, it does not mean that the
estimates of the coordinates of radiators obtained by
the two-stage method are optimum. This is especially
clear at small values of the small signal-to-noise ratio,
when abnormal errors of measurements are revealed.
The results of computer simulation show that the one-
stage algorithm considered in this paper has a lower
threshold signal-to-noise ratio that provides regular
operation conditions of the meter.
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We estimate the coordinates of the radiator by the
maximum-likelihood method. Assume that the covari-

ance functions of signal 
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According to model (1) of observed signals, the
covariance functions of the useful signals proper differ
only by the amplitude factors; therefore, all functions
can be expressed through one function, for example,
the first and then 
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The signal and noise are independent; therefore, the
covariance function of the observed signal

(4)

In order to simplify subsequent analysis, we intro-

yn t( ) sn t( ) ξn t( ).+=

�n f( ) Sn f( ) Ξn f( ),+=

�n f( ) yn t( ) j2πft–( )exp td

∞–

+∞

∫ F yn t( )( );= =

Sn f( ) F sn t( )( ),  Ξn f( ) F ξn t( )( );= =

1 N,

Zn Z–( )T Zn Z–( )

1 N,

Ksn
τ( ) M sn t( )sn t τ–( )[ ] ,=

Kξn
τ( ) M ξn t( )ξn t τ–( )[ ] ,  M sn t( )[ ] 0,= =

M ξn t( )[ ] 0.=

Ksn
τ( ) αn

2
Ks1

τ( ),=

Kynyn
τ( ) M yn t( )yn t τ–( )[ ] Ksn

τ( ) Kξn
τ( ).+= =

duce the designation Ks(τ) ≡ (τ) and set

(5)

where Dnk = Dn – Dk = τnk(Z) + χnk; τnk(Z) = τnl(Z) –
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factor; H = ||χ21, …, χN1||T; 

G(Z, H) = M(YT, Y*) = diag(D(�s(i)A1A + Gξ(i))D*) =
diag(�s(i)DA(1 + C(i))AD*) is the IN × IN matrix con-
sisting of I × I submatrices of dimensions N × N such
that only the (i, j)th submatrices situated on the diago-

nal (at i = j, i, j = ) are nonzero matrices; all ele-
ments of matrix 1 are equal to unity; E is the unit

matrix; A = diag(αn); C(i) = diag ; Gξ(i) =

diag( (i)); D(i) = diag(exp(– j2πif∆Dn)) is the N × N
matrix such that only its (n, k)th diagonal elements (at

n = k, n, k = ) are not equal to zero;

Consider the direct N × N matrix Z = 1 + X, where
X is the diagonal matrix with elements X1…XN . If we
take into account that the inverse matrix Z–1 takes the
form Z–1 = X–1(E – δ1X–1), δ = (1 + 1/X1 + 1/X2 + … +
1/XN)–1 (this expression can be easily derived by calcu-
lating the product of the direct inverse matrices), then
we obtain
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nth channel (n = , α1 = 1), and qn(f) =  is

the signal-to-noise ratio at the input of the nth receiver.
Taking into account the above assumption that

χmax2∆F � 1, we can write 2πfDnk = π(f – f0)χnk +
2πfτnk(Z) + 2πf0χnk � 2πfτnk(Z) + 2πf0χnk because, in
this case, when f varies between f1 and f2 , the influence
of the term 2π(f – f0)χnk � π on the result of integration
in negligible for all possible values of χnk . Thus, the
synchronization error is revealed as a purely phase vari-
ation of the signal. Hence,

(14)

where

ϕnk(f) = ϕn(f) – ϕk(f); 

ϕi(f) =  is the phase-
frequency characteristic of the ith signal (i = n or k), and

Thus, we can represent the optimum estimation
algorithm in the form
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sical procedure, when the maximum-likelihood esti-
mates of the vector H are obtained, it is necessary to
substitute them into the likelihood function (14), and
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coordinates of the radiator. A similar procedure is per-
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formed in [2] when the maximum with respect to
delays is determined under the assumption that the dif-
ferences of phases between all pairs of signals are inde-
pendent (i.e., χnk ≠ χn1 – χk1). In this paper, we assume
that only the difference of phases between the signals
received by the first and other receivers are independent
(i.e., χnk ≠ χn1 – χk1); as has been pointed out in [2], this
assumption is more preferable from the practical view-
point. Note that, for the model proposed in [2], the
complete solution is obtained; however, for the case
under consideration, it is rather difficult to obtain an
explicit expression that does not contain a parasitic
parameter H. In this way, it is expedient to consider a
simpler algorithm in which the search for the maximum
is performed only in the space � using the procedure of
maximization of the function

(16)

Thus, a heuristic (for the model of signal accepted in
this paper) estimation algorithm is equivalent to the
optimum (for the model of signal accepted in [2]) algo-
rithm and has the form

(17)

The two-stage algorithm consists of two proce-
dures: optimum measurement of the vector of delays
and final optimum estimation of the radiator coordi-
nates (the term optimum is understood in the sense that
the sought after estimates are determined by the maxi-
mum-likelihood method). If we perform the same pro-
cedures that are used for deriving expressions (14) and
(16) and carry out synthesis not with respect to Z but
with respect to T = ||τ21, …, τN1||T, we obtain the follow-
ing rules for estimating the vector of delays: the opti-
mum algorithm
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and the heuristic algorithm
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and �n(f) and ϕnk(f) have the same sense as in (14).

The algorithm of the second stage—the algorithm of
estimating the coordinates of the radiator—can be rep-
resented in the form [4]

(20)

where Z0 = ||X0Y0Z0 ||T are the coordinates of the sup-
porting point; T(Z0) = ||τ21(Z0), …, τN1(Z0)||T is the vec-
tor of delays corresponding to the supporting point

[τn1(Z0) = (Rn(Z0) – R1(Z0)); Rn(Z0) =

; Zn = ||XnYnZn||T are the coordi-

nate of the nth receiver]; S = M[(  – M( ))(  –

M( ))T]; (BTS–1B)–1 = M[(  – M( ))(  – M( ))T];

and Bni =  are the elements of matrix B [n =

, i = , r1 = XR, r2 = YR, r3 = ZR, W = 2 for
a plane, and W = 3 for a space].

We see that the differences between one-stage algo-
rithm (15) [or (17)] and two-stage algorithm (18)
[or (19)] and (20) are as follows: in the first case, the
estimation of location of a radiator is performed by
scanning with respect to coordinates Z in order to find

an estimate  that maximizes LF; when the two-stage

algorithm is applied, first, the vector of delays  is esti-
mated that corresponds to the maximum of its LF, and
then the radiator coordinates are calculated by rule (20)

using the obtained vector .

2. ACCURACY OF ESTIMATING THE LOCATION 
OF THE RADIATOR

The potential accuracy of estimating the coordinates
of a radiator by the optimum algorithm is determined
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H = Ĥ 
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Here, 

Taking into account the symmetry of function qi(f)
with respect to the zero frequency, we obtain 
ic = 0,
which allows us to write the expression

(21)

where 

matrices , , and  consist of the elements

, , and ; � = ; 

( ) is the zero matrix consisting of N – 1 rows and
N – 1 (W) columns; E is the unit (N – 1) × (N – 1)
matrix; and the elements of matrix B are described in
the explanation for (20).

In the matrix FKR, the element  carries the
information on the accuracy of determination of coor-
dinates. Using the block Gaussian algorithm for invert-
ing the matrix, we obtain

(22)

where P = (  – ( )–1( )T)–1 is the
Kramer–Rao matrix boundary of the errors of estimat-
ing the vector of delays T.

Thus, expression (22) enables one to calculate the
accuracy parameters of the one-stage algorithm of
estimating the coordinates. When implementing algo-

�ab f( ) To 2π( )2
qa f( )qb f( )/ 1 qn f( )

n 1=

N

∑+ ,=

νab
p( )

 

Pi b 1+( )
p( )

,  a
i 1=

i b 1+≠

N

∑– b,=

P a 1+( ) b 1+( )
p( )

,  a b,≠

 a b, 1 N 1–, ,= =

p 1 3, .=

Pab
1( )

2 f
2
Pab f( ) f ,  Pab

2( )
d

0

+∞

∫ 2 f 0 f Pab f( ) f ,d

0

+∞

∫= =

Pab
3( )

2 f 0
2

Pab f( ) f .d

0

+∞

∫=

F �
TFT�,=

FT
FT

1( ) FT
2( )

FT
2( )( )

T
FT

3( )
,=

FT
1( ) FT

2( ) FT
3( )

νab
1( ) νab

2( ) νab
3( ) B ON 1–

N 1–

OW
N 1– E

ON 1–
N 1–

OW
N 1–

FKR
1( )

FKR
1( ) BTP 1– B( )

1–
,=

FT
1( ) FT

2( ) FT
3( ) FT

2( )

rithm (20), the matrix boundary P can be used as matrix
S. In this case, the expression (BTS–1B)–1 that describes
the covariance error matrix of estimating the coordi-
nates by the two-stage method (when this method is
applied, the vector of delays is estimated at the first
stage, and the coordinates of the radiator are estimated
at the second stage using the measured delays) coin-
cides with (22). Hence, when errors of finding the loca-
tion of a radiator are small, the potential accuracy of the
two-stage and optimum one-stage methods (according
to the latter method, the location is determined by the
direct processing of signals received by sensors posi-
tioned at different spatial points) are equal, which con-
firms the results obtained in [2, 5, 6].

Let us analyze the properties of matrix P. If the val-
ues of the signal-to-noise ratio are identical for all
receivers, i.e., qi(f) = qn(f) = q(f), �in(f) = �(f), and

 = P(k) (i ≠ n, k = ), then

(23)

Here, all elements of the (N – 1) × (N – 1) matrix 1 are
equal to unity;

The Kramer–Rao matrix boundary of the errors of
estimating the delays

(24)

The diagonal elements of P are equal and can be

represented in the form  = 2/PN. When the signal-to-
noise ratio is uniform in the frequency band 2∆F = F2 –

F1, q(f) = q, �(f) = �, P(1) =  + P, P(2) =

P(3) = 4 ∆F�, and P = �, we can write

(25)

Note that, for a sufficiently large value of the signal-
to-noise ratio, the two- and one-stage algorithms have

identical accuracy described by . However, when

the signal-to-noise ratio is small,  will not describe
the accuracy of determination of the radiator coordi-
nates any longer. Since it is hardly possible to examine
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such situations analytically, one should apply in this
case the method of computer modeling.

We note also that there is no rigorous mathematical
substantiation of heuristic algorithm (19) (for the
model of signal accepted in this paper); therefore, the
optimum and heuristic one-stage algorithms should be
compared using the computer modeling.

3. RESULTS OF SIMULATION

The algorithms described in this paper were imple-
mented using an IBM PC/AT. We compared algo-
rithms (18) and (19) of measuring the vector of delays, as
well as the two-stage (18) and (20) and one-stage (15)

procedures of estimating the coordinates on a plane.
The geometry of arrangement of radiator R and receiv-
ers Re is shown in Fig. 1. The dashed line denotes the
domain, in which the location of the radiator is deter-
mined (it is known a priori that the radiator is located
in the selected domain). The number of receivers N is
equal to four. We assume that the signal and noise are
Gaussian and mutually independent; their spectra are
shown in Fig. 2; the observation time To = 0.5 ms; and
the quantization interval T∆ = 0.5/1024 ms. The useful
signal of the first receiver was generated in the fre-
quency domain. The spectra of signals of other receiv-
ers were obtained by multiplying the first spectrum by

the quantity exp(– j2πf∆kDn1), where f∆ =  = 2 kHz

(k = , n = ). Then, the useful signals were
mixed with noises that were independently generated
for each separate channel and come to the inputs of
measuring units that implemented algorithms (18) and
(19), (18) and (20), and (15). Here, it is necessary to tell
about implementation of optimum algorithms (15) and
(18). In spite of the fact that the scanning should also be
performed in the space � (H ∈  �), it does not cause
substantial temporal losses. In fact, L(Z, H)Z = const and
L(T, H)T = const are smooth functions, and one can easily

determine their maxima, when H = , by any numeri-
cal method performing several iterations. Thus, the

search for maxima of functions L(Z, ) and L(T, )
is similar to the search for maxima of L(Z) and L(T).

The table summarizes the results of comparative
analysis of the optimum (18) and heuristic (19) algo-
rithms of estimating the vector of delays T =
||τ21τ31τ41||T. Here, µlog = 10  and µp multiplies
the spectral density of the signal power presented in
Fig. 2 (the signal-to-noise ratio averaged with respect to
power; unlike q, this quantity does not depend on f).
The variance of measurements of the ith delay is esti-

mated as  =  – )2, where 
 is

the number of tests;  is the true value of τ(i + 1)1; 
is the estimate of τ(i + 1)1 at the nth test by the optimum

(h = 1) and heuristic (h = 2) methods (i = ). The the-
oretical values of variances, i.e., the diagonal elements
of P, are denoted by varTi . The number of tests 
 =
1000. The boundaries of the 95% confidence interval

are equal to 0.93  and 1.08  (see [7], p. 303).

As can be seen from the table, the data obtained by
the method of modeling are sufficiently close to theo-
retical values of varTi . In addition, the optimum and
heuristic algorithms have almost identical accuracy.
Note that the same results were obtained when theoret-
ical variances were investigated for a large array of
other initial data. Thus, the results of simulation con-
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firm the conclusions obtained earlier by analytical
methods.

The comparative analysis of the one-stage (15) and
two-stage (18) and (20) algorithms was performed in
the following manner. We assumed that, unlike the pre-
vious case, the signal and noise have rectangular spec-
tra with the width 2∆F = 128 kHz; the signal-to-noise
ratio q is identical all four receivers. In the two-stage
algorithm, first, the time delays between signals were
estimated by optimum rule (18). Then, the coordinates of
the radiator were estimated on the basis of the measured
delays by known optimum algorithm (20). The one-
stage algorithm is based on expression (15). Note that,
for the minimum value N = 3, the one-stage algorithm
has no advantages over the two-stage algorithm, since
the second stage of the latter contains only one equation

 = Z0; thus, the two-stage algorithm consists actually
of the first stage.

We have chosen the probability of abnormal esti-
mate of the radiator coordinates as the performance cri-
terion of these two algorithms (one- and two-stage);
namely, the probability that the module of error

 (∆x =  – XR and ∆y =  – YR, where , 
and XR, YR are, respectively, the measured and true
coordinates of the radiator) exceeds the value

3 , where  and  are the diagonal ele-

ments of matrix .

Figure 3 shows the dependence of the probability of
abnormal estimate Pabn on the signal-to-noise ratio q.
We see that, for the chosen conditions, the synthesized
one-stage algorithm (curve 1) has an advantage over the
two-stage algorithm (curve 2) by approximately
2−3 dB. The given circumstance is explained by the
fact that when the signal-to-noise ratio decreases below
the threshold value, false modes begin to appear in
addition to the main maximum of LF corresponding to
true parameters of the signal; these modes are arbi-
trarily located in space of the search and their level is
commensurable with the main extremum. In a broader
aspect, this problem is discussed in [2].
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In order to explain the reasons of this advantage,
consider a typical situation when the level of noise has
attained the value at which a false peak appears at a

point  that slightly exceeds the level of the main max-

imum corresponding to the point . This means mal-
function of the system and obtaining arbitrary values of
the measured parameters. In this case, we think that it
is quite logical to select the maxima, at which the con-

dition  ≈  (|i – j| + |k – m| ≠ 0, i, j, n, m = ) is

fulfilled, where = || ||T are the coordinates
obtained at the points of intersection of the lines of
position corresponding to the estimates of delays 

and . This situation is illustrated by Fig. 4; the solid
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Table

µlog , ms2 , ms2 , ms2 , ms2 , ms2 , ms2 varT1, ms2 varT2, ms2 varT3, ms2

20 9.98 × 10–9 9.94 × 10–9 1.40 × 10–8 9.97 × 10–9 9.95 × 10–9 1.41 × 10–8 9.96 × 10–9 9.96 × 10–9 1.37 × 10–8

15 3.20 × 10–8 3.22 × 10–8 4.42 × 10–8 3.21 × 10–8 3.24 × 10–8 4.41 × 10–8 3.17 × 10–8 3.17 × 10–8 4.36 × 10–8

10 1.05 × 10–7 1.04 × 10–7 1.41 × 10–7 1.06 × 10–7 1.07 × 10–7 1.47 × 10–7 1.03 × 10–7 1.03 × 10–7 1.41 × 10–7

5 3.51 × 10–7 3.50 × 10–7 4.80 × 10–7 3.52 × 10–7 3.60 × 10–7 4.81 × 10–7 3.47 × 10–7 3.47 × 10–7 4.76 × 10–7

0 1.57 × 10–6 2.16 × 10–6 7.40 × 10–4 1.63 × 10–6 2.26 × 10–6 7.38 × 10–4 1.28 × 10–6 1.28 × 10–6 1.75 × 10–6
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lines are hyperbolas that correspond to delays  =
|| ||T, at which LF LT(T, H) [or �T(T)] attains
the global maximum.

We see that the coordinates , , and  cal-
culated using these algorithms differ substantially.
Hence, when estimating the coordinates at the second
stage by algorithm (20), we determine the location of
the radiator with a large (abnormal) error. The dashed
hyperbolas are constructed for the second largest mode
of function LT(T, H) [�T(T)]. Here, the second mode
of LT(T, H) (�T(T)) attains its maximum at the point

 = || ||T. The points of intersection of the
lines of position corresponding to the maximum of the
second mode give the coordinates , , and 

that are concentrated around one point; i.e.,  �

 � . This is an additional reason that confirms
the following statement: in order to decide the coordi-
nates of the radiator, it is expedient to choose the max-
imum of the second mode and not of the first in spite of
the fact that the maximum of the first mode is greater
than the maximum of the second mode (other tech-
niques for eliminating abnormal errors are known; for
references, see, for example, [2, Chapter 15.4]). The
one-stage algorithm automatically uses this informa-
tion. Therefore, the probability of normal estimation of
the radiator coordinates obtained by the one-stage algo-
rithm is higher in comparison with the two-stage algo-
rithm.

CONCLUSION

The analysis of the optimum and heuristic algo-
rithms performed in this paper shows that the measure-
ment accuracy of both algorithms is almost equal.

The two-stage procedure of estimating the location
of a radiator comprises estimation of the vector of
delays between the accepted signals by the maximum-
likelihood method and estimation (using the measured
delays) of the coordinates of a radiator by the same
method. This procedure may require an additional
elimination of abnormal errors of measurements. In

this case, it is expedient to analyze the operation quality
of the algorithm of measuring the coordinates by com-
paring this algorithm with the one-stage procedure of
estimating the location of the radiator; in fact, within
the framework of the statement of the problem pro-
posed in this paper, the latter procedure may be consid-
ered optimum on the whole. The analysis of the one-
stage algorithm and its comparison with the two-stage
procedure allows us to conclude that when the coordi-
nates of low-power radiators are determined and the
power of accepted signals is commensurable with
noise, it is reasonable to use the one-stage algorithm
that has a lower threshold signal-to-noise ratio provid-
ing regular operation conditions of the system. At the
same time, when choosing an algorithm for finding the
location of relatively powerful radiators, one should
give preference to the algorithm which admits simpler
implementation under specific operation conditions of
a system of finding the location of radiators.
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Ẑ32'
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