
 

139

 

Journal of Communications Technology and Electronics, Vol. 49, No. 2, 2004, pp. 139–153. Translated from Radiotekhnika i Elektronika, Vol. 49, No. 2, 2004, pp. 156–170.
Original Russian Text Copyright © 2004 by Dubrovin, Sosulin.
English Translation Copyright © 2004 by 

 

MAIK “Nauka

 

/Interperiodica” (Russia).

 

1. INTRODUCTION

In this work, we analyze a passive system for the
one-stage determination of the radiator position. The
system consists of narrow-base subsystems (NBSs) and
a central processing station (CPS) (see Fig. 1). A nar-
row-base subsystem contains reception points (RPs)
spaced by a distance comparable to the wavelength of
the received signal and substantially less than the dis-
tances to the radiator, digital signal processing unit, and
subsystem ensuring the data exchange between the
NBS and the CPS. By the reception point, we mean an
antenna with a circular pattern whose signal is ampli-
fied, selected in the chosen frequency band, and con-
verted to an intermediate frequency (if this is required
by the design of the receiving section (RS)). The closest
analog of the proposed system is a direction-finding
system for determining coordinates of a radiator using
the phase-comparison method for measuring bearing
angles. The main difference between the one-stage esti-
mation system studied in this paper and the direction-
finding system lies in the fact that, in this case, esti-
mated parameters are the radiator coordinates, and
direct measurements of intermediate parameters (bear-
ing angles) are not carried out.

The one-stage method for estimation of the radiator
coordinates by a wide-base passive system was ana-
lyzed in [1]. It is significant that implementation of this
method requires at least three RPs spaced by distances
comparable to the distance to the radiator. Placing the
RPs onboard such carriers as a helicopter or an airplane
makes this system expensive. At the same time, the
method proposed in this work can be implemented with
a single carrier moving in space, which is undoubtedly
an attractive way of reducing the cost of the radiator-
position finding system.

2. FORMULATION OF THE PROBLEM

Let us have a radiator (R) generating narrowband
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 narrow-base subsystems.
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 spaced RPs. Accordingly,

the entire measuring system contains  RPs.
Signals received at the RPs are mixed with noises
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 ). The signal and
noises are stationary, ergodic, and mutually indepen-
dent Gaussian processes with zero mean.

Let us assume that delays between signals received
by the spaced RPs only result from their mutual posi-
tions in space. At the same time, there are factors creat-
ing additional distortions during the signal reception
that cannot be rigorously taken into account (multiple
reflections from nearby structures, differences in
parameters of antennas and feeders, etc.). We assume
that these distortions are sufficiently small to allow
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their approximate consideration by increasing the
power of noise components 

 

(

 

t

 

)

 

.

We assume that observation time 

 

T

 

o

 

 is substantially
larger than the widths of correlation functions (correla-
tion lengths) of both the signal and the noises as well as
the maximum possible delay between signals. We also
assume that RPs of the 

 

n

 

th NBS receive the 

 

n

 

th sample
of desired signal 

 

s

 

(

 

t

 

)

 

 that does not overlap the 

 

k

 

th sam-

ple (

 

n

 

 

 

≠

 

 

 

k

 

,

 

 where 

 

n
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k

 

 = 

 

). This assumption is valid
when several NBSs are formed using one NBS moving
in space and the error in the time synchronization of
different NBSs substantially exceeds correlation
lengths of both the signal and the noise.

Thus, the model of processes observed in NBSs can
be written as
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the input of  (the 
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the amplitude factor determined by the power attenua-
tion coefficient for signal 
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 passing from radiator R
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 are the radiator
coordinates, 
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 are coordi-

nates of the , and 
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 denoted the operation of
transposition.

In the frequency domain, formula (1) is replaced by
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, where 
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F
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, and 

 

F

 

 is the Fourier transform
operator.

3. SYNTHESIS
OF THE ONE-STAGE ALGORITHM

FOR ESTIMATION
OF THE RADIATOR COORDINATES

We will seek an estimate of the radiator coordinates
using the maximum likelihood method. Let us assume
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and their power spectral densities,

and 

Since the signal and the noise are independent quan-
tities, the covariance matrix of the observed process is

(2)

where  = 1 for mn = ln and  = 0 for mn ≠ ln .

Using formulas (2), we can write expressions for
spectral densities [2] of analyzed signals and noises:
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maximum possible delay τnmax. In this case, the LF
takes the form

(4)

where Cn(a) = (2π)–I�/2|G(r, a)|–1/2 is the normalizing
factor depending (as will be shown below) only on vec-
tor a = ||a1, …, aN||T, 

I is the number of frequency components in the signal

spectrum, f∆ = , G(r, a) = Μ(U*UT) = di‡g(Gn(i)) is

the I� × I� covariance matrix (� =  is the

total number of RPs) consisting of IN × IN submatri-
ces of which nonzero ones are only Mn × Mn submatri-
ces Gn(i) situated on the diagonal, Gn(i) =
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Dn(i) = di‡g(exp(–j2πif∆ )), ën(i) = di‡g

(mn = ) are Mn × Mn diagonal matrices in which
only (mn, mn)th diagonal elements take nonzero values,

(i) = , and �s(i) = Gs(if∆).

The inverse covariance matrix is
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If we take into account that, after the inversion of
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Then,
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replacements: �k(i)  Uk(if∆), (i) 

; �s(i)  Gs(if∆), if∆ = f, and f∆ =

  df. To simplify mathematical transformations,

we can replace in (7) the sum over i with the sum over f.

All combinations (r) – (r) can be expressed
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(r)) ≈ 2πf0( (r) – (r)) = 2πf0( (r) –

(r)). Whence it follows that

where  =  is the fre-

quency characteristic of the input filter installed in the

nmnth channel,  =  is the signal-to-
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1, and (r) ≡ 0 for λn = 0.
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where

(12)

(13)

Thus, the one-stage position-finding algorithm
should form maximum-likelihood estimates of radiator
coordinates  and amplitude factors :

(14)

A possible implementation of the position-finding
system operating in accordance with formulas (12)–
(14) is considered below (see Section 6 and Fig. 14).
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The potential accuracy of estimation of radiator
coordinates r and vector a is determined by Cramér–
Rao matrix bound FCR equal to the matrix that is the
inverse of Fisher information matrix F: FCR =

 = F–1, where F = .

Elements of Fisher matrix F are determined as fol-
lows:
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Differentiating expression (12) and calculating the
mean value at point ( , ), we obtain

Thus,  and, consequently, F2 are zero matrices.

As a result, F1 =  and F3 = .

Matrix F1 can be written as

(15)
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where matrix Çn consists of elements

and matrix  contains elements (µn, ln) =

, λn, µn = .

Hence, the potential accuracy of coordinate estima-
tion for the one-stage method is described by the matrix

Fos =  = (F1)–1. (16)

The structure of matrix , which is the inverse

matrix for matrix  appearing in (15), is also of
interest. The reason is that the phase-comparison direc-
tion-finding systems use, as a rule, a two-stage bearing
measurement procedure. The first stage lies in measur-
ing phase delays that are recalculated to bearing angles
at the second stage (see, for example, [4]).

Let us consider the structure of matrix  for the
case when signal-to-noise ratios are the same for all
RPs and are uniform within frequency band 2∆f = f2 – f1.
In this case,  =  = q; consequently,

 =  = P, an = am = a, and  =

 = �ξ. In addition, we assume that the number
of RPs is the same for all NBSs, i.e., Mn = Mk = M.
Then,

 = P(ME – 1), (17)

where P = 16π2To ∆f q2/(1 + Mq), matrices E and 1
have dimensions (M – 1) × (M – 1), and

(18)
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Diagonal elements of matrix  can be repre-

sented as  = . In this case,

(19)

In expression (14), we estimate not only informative
parameter r but also noninformative parameter a.
Implementing rule (14), we have a vexed problem of
the first approximation to amplitude vector a, because
we know nothing about its distribution law. Below, we
propose a heuristic method enabling formation of the
preliminary estimate of vector a. The potential mea-
surement accuracy for vector a is described by matrix

, which is the inverse matrix for matrix F3 .

Matrices  and F3 are diagonal. Taking into
account the above assumptions, we can write

(20)

where EN is the N × N identity matrix and  is the vari-
ance of the measurement error for amplitude factor a.
The relative error is

(21)

5. COMPARATIVE ANALYSIS 
OF ONE-STAGE AND DIRECTION-FINDING 

METHODS FOR DETERMINING
THE RADIATOR POSITION

Let us consider the procedure for measuring the
radiator coordinates with an intermediate stage (mea-
surement of bearing angles). Below, we call this proce-
dure the direction-finding algorithm. In this algorithm,
the nth NBS determines estimates of azimuth and ele-

vation angles  and  (Fig. 4) and signal amplitudes
 according to the rule

(22)

where
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	n α̂n β̂n ân, ,( ) 	n αn βn an, ,( ),
αn A βn B an 
∈,∈,∈

max=

	n αn βn an, ,( ) 1
2
--- J1n an( ) J3n an( )–( )=

+ Re �2n αn βn an, ,( )( ) ] } ;



146

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 49      No. 2     2004

DUBROVIN, SOSULIN

ments to expressions (8) and (13), respectively; and

(24)

µn = mn – 1, λn = ln – 1, (r) ≡ 0 for λn = 0. 

All components of expressions (22)–(24) were already

determined above except for (αn, βn) (where µn =

). In this case, (αn, βn) = (1/c) , where

The matrix describing the potential accuracy of
measuring azimuth and elevation angles in the nth NBS
is similar to that appearing in formula (15):

(25)

where elements of matrix �n are given by
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In the direction-finding method, the radiator coor-
dinates are estimated according to the rule [5, expres-
sion (12)]

(26)

Here, q = ||α1, β1, … , αN, βN||; 
 = diag(
n) is the 2N ×
2N matrix consisting of N × N submatrices of which
nonzero ones only (n,n)th 2 × 2 submatrices 
n situated
on the diagonal,

and vector r0 denotes coordinates of the reference
point.

As follows from Fig. 3,

αn = arctan{(YR – Yn)/(XR – Xn)},

βn = arcsin{(ZR – Zn)/[(XR – Xn)2

+ (YR – Yn)2 + (ZR – Zn)2]1/2}.

Thus,

where

�n = [(XR – Xn)2 + (YR – Yn)2]1/2;

Rn = [(XR – Xn)2 + (YR – Yn)2 + (ZR – Zn)2]1/2.

The accuracy of coordinates estimated with the
direction-finding method is determined by the formula
[5, expression (16)]
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Thus, for large signal-to-noise ratios, when mea-
surement errors are described by the Cramér–Rao
bound, accuracies of the radiator coordinates estimated
using the one-stage and two-stage (direction-finding)
methods are identical.

6. ANALYSIS OF POSITION-FINDING 
ALGORITHMS IN THE PRESENCE 

OF ABNORMAL MEASUREMENT ERRORS

The main differences between accuracies of the
radiator coordinates estimated with the one-stage and
two-stage methods arise when the signal level falls
below some threshold characterized by the appearance
of abnormal measurement errors. To demonstrate the
influence of this effect, we consider the structure of the
direction-finding device shown in Fig. 5. In this case,
we use the following simplifications. The narrow-base
subsystem contains four RPs, each comprising an
antenna with circular pattern in the azimuth plane and
an RS. Using formula (25), we can readily demonstrate
the well-known result (see, for example, [6, p. 221]):
the accuracy of measuring the azimuth and elevation
angles is directly proportional to the distance between
extreme antennas. At the same time, this configuration
should satisfy the condition d < λ/2, where λ = c/f0 is
the wavelength of the received signal. We will use the
relationship 2d = 0.8λ. In addition, we assume that the
direction-finding device and the radiator are situated in
the same plane.

We choose the situation in which N = 1. It corre-
sponds to the case when the system measures a single
bearing of the radiator or performs the first estimation
of the position line in the flyby position-finding

method. Then,  = 0 (mn =  and n = 1) and ZR =
0. Assume that spectral densities of the signal and noise

Znmn
1 4,

powers are the same for all RPs and are uniform in the
frequency band 2∆f = f2 – f1. In this case, (f) =

(f) = Gξ, Gs(f) = Gs, and (f) = (f) = q (q =
aGs/Gξ). As a result, expression (23) takes the form
(index n is omitted)
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is the difference of pseudophases for signals at the mth
and lth RPs.

The estimate of azimuth α can be obtained in an
explicit form if we retain in (29) only two terms corre-
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sponding to two orthogonal pairs: RP1–RP3 (l = 1 and
m = 3) and RP2–RP4 (l = 2 and m = 4). Then,

(30)

Here, we took into account that Φ24 = –Φ42 and
Φ13 = −Φ31.

The derived expression is of interest because it
allows a rather simple way for finding the radiator bear-
ing. The optimal (maximum likelihood) estimate can be
found using a more complicated method:

(31)

Below, we analyze operation of heuristic (30) and
optimal (31) bearing measurement algorithms using
simulation on a personal computer.

The signal level is estimated using the rule

(32)

where

Calculating the derivative of quantity 	2(a), taking
into account that q = aGs/Gξ, and equating the result to
zero, we obtain an explicit expression for the estimate
of the signal amplitude (a):

(33)

Estimates obtained from formulas (31) and (32) are
optimal estimates only for a single measurement (N =
1). When we measure coordinates (i.e., when N > 1),
these results can only be treated as auxiliary results
allowing us to simplify implementation of one-stage
algorithm (14), in which we should estimate not only
coordinate vector r but also noninformative parameter
a. Using expression (33), we can obtain a rather exact

approximation to an (n = ). Simulation revealed
that, implementing algorithm (14), one has no need for
additional refinement of the first approximation
obtained from formula (33).

Let us now obtain the particular form of expres-
sion (25) for the case under study. We should take into

account that �n = ||sin(α) + cos(α), 2sin(α),

sin(α) – cos(α)||T,  = P(4Ö – 1), and P =

16π2To ∆f q2/(1 + 4q). Then,

(34)

Note that variance  is independent of α. Hence,
for the antenna system whose configuration is shown in

Fig. 5, the potential value of the bearing measurement
accuracy is independent of the direction of arrival of the
received signal.

Figure 6 depicts the bearing measurement error (σα)
as a function of the signal-to-noise ratio (q). Curve 1 is
the theoretical potential error calculated from for-
mula (34); curves 2 and 3 are bearing measurement
errors obtained using the personal-computer simulation
of measurements carried out according to rules (31) and
(30), respectively. Initial data for calculations were the
following: f0 = 100 MHz (accordingly, λ = 1.5 m); d =
0.6 m; 2∆f = 32 kHz; To = 1 ms; and Gs = Gξ = 1 pW/Hz.
The variance of the measured radiator bearing was esti-

mated using the rule varα = ,

where � is the number of measurements (tests) and
αt is the true bearing angle.

Note that the primary goal of this simulation is to
additionally check the validity of approximations and
assumptions made in the course of derivation of expres-
sion (34) describing the potential measurement accu-
racy for a single bearing as well as to carry out the com-
parative analysis of explicit form (30) of the bearing
estimation algorithm and optimal algorithm (31). Sim-
ulation results obtained for q < 0 are no longer
described by bound (34); they have only qualitative
character because, in this domain, the so-called abnor-
mal measurement errors begin to play their role.
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Increasing the number of measurements in this domain,
we cannot obtain more stable results. Moreover, in the
presence of abnormal errors, sample variance varα no
longer carries information on the quality of operation of
a particular algorithm. A more objective picture can be
obtained if the calculation of variance varα is replaced
with the calculation of the probability of abnormal
measurement error.

As was mentioned above, the estimated amplitude
obtained from rule (33) is a good initial approximation
of components of vector a when we seek the maximum
of LF (12). Let us find the excess in the potential accu-
racy of the measured amplitude over the accuracy of mea-
surements carried out in accordance with formula (33).

Figure 7 presents ratio  calculated as a function of

signal-to-noise ratio q. The solid line corresponds to the
theoretical error calculated using formula (21) and
points mark relative errors of the amplitude estimated
according to rule (33). The results were obtained using
the numerical simulation on a personal computer. As is
seen from the plot, errors in the estimated signal level
are described well by the Cramér–Rao bound, includ-
ing the case of small signal-to-noise ratios.

The purpose of these simulations is to additionally
check the validity of assumptions made in the course of
derivation of expressions related to the direction-find-
ing algorithm, to reveal the threshold for the normal
operation of this algorithm, and to find possibilities of
reducing the time required for seeking the LF maxi-
mum in the one-stage algorithm that may arise due to
the use of the first approximation of amplitude vector a
based on rule (33).

Let us now analyze the one-stage algorithm itself
and compare its efficiency with that of the direction-
finding algorithm. In order to measure coordinates, we
should fulfill the condition N > 1. In this case, potential
accuracies of coordinate measurements performed

σa

a
-----

using the one-stage and direction-finding algorithms
are identical. Their values can be determined as fol-
lows:
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operation of the one-stage and direction-finding algo-
rithms in the following system for determining the radi-
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ator coordinates. Let us have a carrier moving in space
for some time. An NBS whose antenna system is shown
in Fig. 5 is installed onboard the carrier. We consider
the coordinate determination problem for the radiator
situated on a plane. If the carrier is an aircraft, the dis-
tance from the radiator to the carrier is assumed to be
substantially larger than the flight altitude (i.e., the
flight altitude is neglected). Positions at which the mea-
surements are carried out are marked by points on the
0x axes in Figs. 9–13.

The initial parameters were the following: the radi-
ator coordinates are XR = 100 km and YR = 100 km;
coordinates of five sites at which the measurements

were carried out (in kilometers) are r = || , …, || =
||0.0, 50.0, 100.0, 150.0, 200.0||; the area containing the
radiator is 400 × 400 km; the center signal frequency is
100 MHz; the intermediate frequency is chosen below
the halved signal sampling frequency and equals
20 MHz; the number of time-domain samples is
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131072 within observation interval To = 1 ms; the sig-
nal sampling frequency is 131072 kHz; and signal
bandwidth is 32 kHz.

Qualities of operation of the one-stage and direc-
tion-finding algorithms are compared using probabili-
ties of abnormal estimation of the radiator coordinates,
for which we use the probability that absolute value of

error  (∆x =  – XR and ∆y =  – YR, where

 and  and XR and YR are measured and true radia-

∆x
2 ∆y

2+ X̂ Ŷ

X̂ Ŷ

tor’s coordinates, respectively) exceeds 3 ,

where  and  are diagonal elements of matrix Fos

in formula (35).
Figure 8 depicts probability of abnormal estimate

Pabn as a function of signal-to-noise ratio q for the one-
stage (curve 1) and two-stage (curve 2) algorithms. One
can see that, for the chosen conditions and small values
of the signal-to-noise ratio, the synthesized one-stage
algorithm offers an advantage over the two-stage
(direction-finding) one by about 6–8 dB.
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This advantage lies in the following. Rule (26) for
estimating coordinates from measured bearings was
derived under the assumption that bearing measure-
ment errors have normal distribution. This assumption
is valid for large signal-to-noise ratios. If the signal
level falls, the distribution law of the bearing measure-
ment errors increasingly deviates from the normal law.
Consequently, algorithm (26) ceases to be optimal. The
loss in the accuracy of determined radiator coordinates
becomes the most substantial upon the appearance of
abnormal errors in values of measured bearings.

The cause of the advantage of the one-stage algo-
rithm over the direction-finding one is additionally
explained in Figs. 9–13. These figures depict lines of
equal values of the LFs of the one-stage algorithm plot-

ted as functions of coordinates x and y for different val-
ues of the signal-to-noise ratio (concentric lines around
the small circle with a cross marking the radiator posi-
tion measured with the one-stage method) and bearing
lines formed by the direction-finding algorithm (rays
going out from measuring sites). Crosses in the figures
mark lines of equal values of the LF for which these
values are presented in the figure. The triangle with the
letter R marks the true position of the radiator. Each fig-
ure shows the pattern of a single observation of the radi-
ator from five aforementioned sites. Values of LFs for
different x and y were calculated using formula (12).
Components of vector a (required in formula (12))
were determined from formula (33). For each site, the
bearing was estimated in accordance with formula (31).

Special-purpose 

RS

RS

ADC

ADC

RP1

RPå

NBS

r̂

Memory module

Internal data bus

Fig. 14.

computer

100

50

50 100 150 200 x, km

y, km

0

R
(100, 100)

q = –15 dB

–70.4

17.1

–63.8

–50.6

71.5

83.0

88.0

91.3
92.9

Fig. 13.



JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS      Vol. 49      No. 2       2004

ONE-STAGE ESTIMATION OF THE POSITION OF A RADIO SOURCE 153

Analyzing Figs. 9–13, we can notice that, at signal-to-
noise ratios less than 0 dB, the direction-finding system
operates increasingly worse because abnormal errors
may arbitrarily “turn” the measured direction to the
radiator. Therefore, attempts to improve the quality of
measured coordinates by using acquisition of the bear-
ing information and well-known algorithms similar to
algorithm (26) cannot give the desired result. We can
propose several procedures that select (ignore) abnor-
mal bearing measurements. In this case, the reference
method for operation of a position-finding system is the
one-stage method for measuring the radiator coordi-
nates and heuristic procedures derived from some rea-
soning should be compared with the one-stage algo-
rithm in order to estimate the loss in the coordinate
measurement accuracy.

As to the practical implementation, the differences
between the one-stage and two-stage (direction-find-
ing) systems mainly lie in the software. As a possible
design version of the aforementioned systems, Fig. 14
shows the general block diagram of a coordinate meter
installed onboard a carrier moving in space. The meter
contains M reception points, M analog-to-digital con-
verters (ADCs), a special-purpose computer, and
peripheral devices required for operation of the above
components (memory modules, internal data bus, etc.).
This structure of the measuring system allows the
implementation of both one-stage algorithm (14) and
two-stage algorithm described by relationships (22)
and (26). The implementation will be ensured by the
special-purpose computer, which can run the code of
the chosen measurement algorithm.

7. CONCLUSIONS
Using the maximum likelihood method, we

obtained the one-stage algorithm for estimation of the

radiator position by a passive system consisting of nar-
row-base subsystems. The proposed one-stage posi-
tion-finding system can be implemented on the basis of
one carrier moving in space. Expenses of the hardware
of the two-stage (direction-finding) and the one-stage
systems are almost equal.

Analysis of the one-stage and two-stage (direction-
finding) algorithms revealed that, in both cases, accura-
cies of coordinate measurements are identical if the sig-
nal-to-noise ratio exceeds some threshold level ensur-
ing normal operation of the direction-finding algo-
rithm. However, determining coordinates of weak
signal sources (when powers of received signals are
comparable to noise), it is expedient to use the one-
stage algorithm offering a lower value of the signal-to-
noise threshold.
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