Journal of Communications Technology and Electronics, Vol. 49, No. 2, 2004, pp. 139-153. Trandated from Radiotekhnika i Elektronika, Vol. 49, No. 2, 2004, pp. 156-170.

Original Russian Text Copyright © 2004 by Dubrovin, Sosulin.
English Translation Copyright © 2004 by MAIK “Nauka [Interperiodica” (Russia).

THEORY AND METHODS

OF SIGNAL PROCESSING

One-Stage Estimation of the Position of a Radio Source
by a Passive System Consisting of Narrow-Base Subsystems

A.V.Dubrovinand Yu. G. Sosulin
Received January 9, 2003

Abstract—An optimal algorithm for the one-stage estimation of the radiator position by a passive system con-
sisting of narrow-base subsystems was developed. A comparative analysis of one-stage and direction-finding
(two-stage) methods was carried out using both the Cramér—Rao matrix bound and computer simulation. It was
shown that one-stage and direction-finding methods offer equal accuracies of measuring the radiator coordi-
natesif the signal-to-noise ratio exceeds some threshold value. It was reveal ed that, for low values of the signal-
to-noise ratio, the one-stage method is far more resistant to abnormal errors than the direction-finding method.

1. INTRODUCTION

In this work, we analyze a passive system for the
one-stage determination of the radiator position. The
system consists of narrow-base subsystems (NBSs) and
a central processing station (CPS) (see Fig. 1). A nar-
row-base subsystem contains reception points (RPs)
spaced by a distance comparable to the wavel ength of
the received signal and substantially less than the dis-
tancesto theradiator, digital signal processing unit, and
subsystem ensuring the data exchange between the
NBS and the CPS. By the reception point, we mean an
antenna with a circular pattern whose signa is ampli-
fied, selected in the chosen frequency band, and con-
verted to an intermediate frequency (if thisis required
by the design of thereceiving section (RS)). The closest
analog of the proposed system is a direction-finding
system for determining coordinates of aradiator using
the phase-comparison method for measuring bearing
angles. The main difference between the one-stage esti-
mation system studied in this paper and the direction-
finding system lies in the fact that, in this case, esti-
mated parameters are the radiator coordinates, and
direct measurements of intermediate parameters (bear-
ing angles) are not carried out.

The one-stage method for estimation of the radiator
coordinates by a wide-base passive system was ana-
lyzedin[1]. It issignificant that implementation of this
method requires at least three RPs spaced by distances
comparable to the distance to the radiator. Placing the
RPs onboard such carriers as ahelicopter or an airplane
makes this system expensive. At the same time, the
method proposed in thiswork can beimplemented with
asingle carrier moving in space, which is undoubtedly
an attractive way of reducing the cost of the radiator-
position finding system.

2. FORMULATION OF THE PROBLEM

Let us have a radiator (R) generating narrowband
signa s(t) in a frequency band ranging from f, to f,.
This signal is received by N narrow-base subsystems.
Each (nth) NBS contains M,, spaced RPs. Accordingly,

the entire measuring system contains ;E: .M, RPs.
Signals received at the RPs are mixed with noises
Em (O (N = 1N and m =1, M,). The signa and
noises are stationary, ergodic, and mutually indepen-
dent Gaussian processes with zero mean.

Let us assume that delays between signals received
by the spaced RPs only result from their mutual posi-
tionsin space. At the same time, there are factors creat-
ing additional distortions during the signal reception
that cannot be rigorously taken into account (multiple
reflections from nearby structures, differences in
parameters of antennas and feeders, etc.). We assume
that these distortions are sufficiently small to allow
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their approximate consideration by increasing the
power of noise components &, (t).

We assume that observation time T, is substantialy
larger than the widths of correlation functions (correla-
tion lengths) of both the signal and the noisesaswell as
the maximum possible delay between signals. We aso
assume that RPs of the nth NBS receive the nth sample
of desired signal s(t) that does not overlap the kth sam-

ple (n#k, wheren, k=1, N). Thisassumption isvalid
when several NBSs are formed using one NBS moving
in space and the error in the time synchronization of
different NBSs substantially exceeds correlation
lengths of both the signal and the noise.

Thus, the model of processes observed in NBSs can
be written as

Unm, (1) = Sam, (1) + &nm (1), ey

where S, (1) = /a, St - T,y ) isthe desired signal at
theinput of RP,, (the mth RP of the nth NBS), a, is

the amplitude factor determined by the power attenua-
tion coefficient for signal s,(t) passing from radiator R

tothenthNBS, 1,,,, (1) = R, (r)/cisthetimeinwhich
sgnal st) travels from R to RP,,, R, (r) =

A/(rnmn—r)T(rnmn—r) is the distance from the radiator

to RP,,, (Wheren=1,N andm,= 1, M,), cisthesig-
nal propagation speed, r = |[Xg, Yx, Zg|[ arethe radiator
coordinates, oy, = [ Xpm s Yom - ann|[r are coordi-
nates of the RP,, , and T denoted the operation of
transposition.

In the frequency domain, formula (1) is replaced by
Unm (F) = Sy () + S (), where

+o00

Unm (f) = J'Unmn(t)exp(—JZTfft)dt = F(Unm (1));

Sim,(f) = F(sum, (1));

Zom, (F) = F(&qm (), and F is the Fourier transform
operator.

3. SYNTHESIS
OF THE ONE-STAGE ALGORITHM
FOR ESTIMATION
OF THE RADIATOR COORDINATES

We will seek an estimate of the radiator coordinates
using the maximum likelihood method. Let us assume
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that we know covariance functions of signal s(t) and
noise &, (1),

KD = M[s,(Ds(t - D] = M[s(Ds(t - D],
KEnmn m=M [E.nmn (t)Enmn (t-1ol,
M[sD]=0, MI[s(Dst-D]=0, M[&n (D]=0

(n,I=1,N,nzl,m,=1M,),

and their power spectral densities,

+o00

Gy(f) = J’Ks(r)exp(—jZTrfr)dr

and

+oo

Genm () = IKEnmn(T)exp(—jZTrfT)dT.

Sincethe signal and the noise are independent quan-
tities, the covariance matrix of the observed processis

Kunmnunln(T) = M[unmn(t)unln(t_r)]

= anKs[T_Tnmn(r) +Tnln(r)] +6nmnnInK£nmn(T)

(my =1, M, 1,= 1, M,), @
Kipy, (1) = MUy (DU (t=T)] = O

(nzk,nk=1,N,m, =1, M, |, =1, M,),

where 8, = 1form,=I,and &, , =0form,#l,.

Using formulas (2), we can write expressions for
spectral densities[2] of analyzed signals and noises:

+o0

Gy, iy (1) = J‘Kunmnunln(T)eXp(—jZT[fT)dT

= anGs(f)eXp{ _j 2T[.':(Tnm”_Tklk)} + 6nmnnInGEnmn(f)!
+o G)

Gunmnuk.k(f) = _[Kunmnumk(T)eXp(_j 2mft)dt = 0.

Thus, cross-spectral density G, , (f) and cross-
covariance function K, , (1) are known to within

amplitude factors a, and delay T, (1) — Ty (1)
depending on radiator coordinatesr.

Let uswrite the likelihood function (LF) taking into
account that observation time T, is the same for al
NBSs. We assume aso that time T, is far larger than
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maximum possible delay T1,,,,... In this case, the LF
takes the form

P(Ur,a) = Cn(a)exp[—%UTG_l(r,a)U*], )

where C (a) = 2m)"2|G(r, a)['? is the normalizing
factor depending (aswill be shown below) only on vec-

tora=|la, ..., a\l[",
u = Ju’),..,uT( -l
u() = [ulG), ... Uk’
Un(i) = [Waa(i), o, Wt (D)
(i=0,1-1 and n=1,N);
+T,/2
Unn (1) = F [ U (D eP(—j27 F 0k
O—TO/Z
m,=1M, i=01-1,

| isthe number of frequency components in the signal

spectrum, f, = _% , G(r, a) = M(U*UT) = diag(G(i)) is

the 1L x 1L covariance matrix (M = Zr’:': M, isthe
total number of RPs) consisting of IN x IN submatri-
ces of which nonzero ones are only M,, x M,, submatri-
ces G,(i) situated on the diagonal, G.i) =
D} ()(@,94(i)1, + Ggq(i))Dy(i)) = diag(a,G(i) Dy, (i) X
(1,+ C(i)Dy()), 1, isthe M,, x M,, submatrix with all
elements equal to unity, Gg(i) = diag(Genm (1)),
Gnm (i
D(i) = diag(exp(2mifs Ty, )). Co(h) = dliag E-@i—(i—;%%
(m, =1, M,) are M,, x M,, diagonal matrices in which
only (m,, mn)th diagonal elements take nonzero values,

(gznm (l) - Ginm (I f ) and (g (l) - T (lfA)
The inverse covariance matrix is
G7(r,a) = diag(G; (i)). )

If we take into account that, after the inversion of
N x N “direct” matrix Z =1 + X, where X isthe diago-
nal matrix with elements X,, ..., Xy, we obtain inverse

matrix Z-! = X-I(E — 81X™"), where E is the identity
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matrix and & = (1 + 1/X, + 1/X, +
find that

..+ 1/X7!, thenwe

G.l(i) = a‘l@‘la)D*(i)c;l(i)

0 C a,% (|) o, 0
x[E,— Dl lCn iOD, (i
0 (ginm(l) (E 2
w0 (6)
= Dn (I)[Gin(l)
O
0 & a9l o
-a,%,(i)Q, (i + LS A OD(i
OQOF* 2 Gomir T
where submatrix Q(i) consists of elements 2., (i) =
Genm (D Gem, (1) My, 1y = LMy Gg() =

diag(cggimn(i)); and E, isthe M,, x M,, identity matrix.
Then,

P(Ujr,a) = C.(a)

x expE%[E (Jon = Jan(3) ~ 2Re( Iy, an)))}gf )

n=1

where 2Re(J,(r, &) = Joy(I', &) + J5, (1, ay);

Mp 1-1

‘]0 Z Z(ginm (l)mnm (I)Ou:m (l)

m—1|

My 1-1
(@) = 5 3 MU0
NERO1=N i S(I)D
(ginm (I)D Z (ginm (|)|:|

M, I =

) 20
Jon(r,2y) = Z > chznm(u)a@m M

Ihy=1m,=1,+1i
Ml‘l
S (i)d"

—D
Cginm (

x exp(12m fa(Tom (1) = Tw (1))).

W, (D) Uy, (1)

If the observation time is sufficiently large (as was
noted above in the formulation of this problem, it must
be substantially larger than correlation lengths and the
maximum possible delay), we can make the following
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O-Lnmy L nmy> “nm,,
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Fig. 2.

Fig. 3.

replacements: WU (i) — _I_iuk(ifA), Genm, () —

1 . . 1. ... .
_?Ganmn(l fA)’ Cgs(l) —_— _? GS(”A)’ IfA = f, and fA =
o [0}

Tl— — df. To simplify mathematical transformations,

(o]

we can replacein (7) the sum over i with the sum over f.

All combinations T, (1) — T, (r) can be expressed
in terms of the components of vector T, = ||rfn "), ...,
1 (OI where T2 (1) = Top (1) = Ty (1), Ty (1) -

Tn,n(r):Tﬁ:(r)—ri’:(r), Ho=m,—1=1M,—1,\,=

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 49

DUBROVIN, SOSULIN

ln—1=0,M,=2 (1,>A,), and Tg" (r) = 0. Vector T,
is composed of delays between the signal of the center
RPinthe nth NBS (here, the center RP isthefirst RP of
the nth NBS) and remaining M, — 1 signals of the nth

NBS. Delays rﬁ” are comparableto fi ; therefore, they
0

can be called phase delays. By f,,, we mean quantity f, =
(f, + f))/2, wheref, and f, are the upper and lower signal
frequencies.

Taking into account that the largest distance
between RPs in an NBS is substantially less than the
distance to radiator, we can use the model of plane
wave front (Fig. 2) and represent the nth NBS (NBS,)
by a point object (Fig. 3). Then, components of vector

n

e where

. on _ 1_
TonCanbewrittenas 1, () = Cr
rn = %y cos(ya(r))
+Yy cos(yn(r)) + %, cos(yx(r)),

%o, = Xom —Xor Y = Yom — Yo
Fn = Zom —Zns

cos(Ya(r)) = (Xg—X,)/R(r),
cos(yy(r)) = (Yr=Yo)/Ry(r),
cos(Yx(r)) = (Zr—=Zy)/Ry(r),

r, =ry = |X, Y. Z|[" are coordinates of the NBS;;

R(N =R, ()= J(r,—r)'(r,—r) isthedistancefrom

the radiator to the NBS,; ya(r), yi(r), and yi(r) are

angles between axes x, y, and z, respectively, and the
vector connecting the NBS, and the radiator (see
Fig. 3). All angles are measured between positive direc-
tions of respective vectors along the shortest path.

In NBSs, we have thefollowing typical relationship:
for f from interval f,—f, and all possible values of differ-
ence Tnmn (I') - Tnln(r)1 2T[(f - fO)(Tnmn (r) - Tnln(r)) <
27t Therefore, this component has almost zero effect on
the result of summation (integration) in the formulafor

J,. Inview of thisfact, we can write that 21f(T,,,, (1) -
Tnln(r)) = 2m(f - f(])(-[nmn (r) - Tnln(r)) + 2T[fo(-[nmn (r) -

No. 2 2004
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T, (M) =2T6(To (1) = Tpy (M) = 2(T8" (1) —
Ti’” (r)). Whence it follows that

Mn +00

> [ Geom (DU (UG (1)l
m,=19

Mn +o00

In(@) = Y [ Wan (U (F)UZm (FdF;

m,=10

M,-1 M

n n

Lariag=y Y exp(j2nfot () -1(r)
lh=1m,=1,+1

+o00

x J.ann(f)WnIn(f)Unmn(f)U:In(f)df;
0

1
GEnmn(f)

a,Gy(f)

where Wy, (f) = isthefre-

guency characteristic of the input fllter installed in the
a,G(f)

Ginmn( f)
noise ratio in the nm.th channel, p, =

1, andT (r)_Ofor)\ =0.

nmth channel, d,, (f) = is the signal-to-

mn_l;)\nzln_

Thereal part of J,(r, a,) can be written as

M,-1 M

Re(‘] n(r! an)) = Anmnnln
2 2.2 ®)

xcos(Ztho(Tq’n(r) I8¢ (F))+q’nmnl)

n

where

Doo
cDnmnnln = arCtan%[ann(f)Wnln(f”Unmn(f)||Unln(f)|
X SIN(Qrm, () = G, (1) AT, [Wo (F)Wo, ()

XU, (B)]| U, ()] cOS(@rm, () — by () df E

is the difference of “pseudophases’ for signals of the
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m,th and |,th reception points in the nth NBS,

Anmnnln = Q:J'ann(f)wnln(f”Unmn(f)||Unln(f)|

2 00

x Sin(nm (1) —¢mn(f))df} + [J'ann(f)Wmn(f)

2 172
x|Unmn(f)||unln(f)|Cos(q)nmn(f)_¢nln(f))dfi| @

is the tota “pseudoamplitude” ¢, (f) =
arctan{Im(U,, (f)), Re(U,, (f)} is the phase-
response characteristic of the signal received at themth

reception point of the nth NBS, arctan(b, c) =
arctan(b/c) for ¢ > 0, arctan(b, c¢) = arctan(b/c) +

sgn(b)g for c < 0, sgn(b) = 1(-1) for b > 0 (b < 0),

arctan(b, 0) = szgn(b)%T for b # 0, and arctan(0, 0) = 0.

In order to calculate normalizing factor C,(a), we
should find the determinant of matrix G(r, a). Using the
definition of matrix G(r, a) givenin (4), we can write

N -1

1716+ ©

n=1i=

In order to find |G,(i)|, we should take into account
the following formula valid for determinants of square
matrices A and B of the same order: |AB| = |BA| =
|A]IB| [3, Section 13.2]. Moreover, for N x N matrix Z =
1 + X, where X isthe diagona matrix with elements X,

., Xy, we have [Z] = (3 Xa)(1 + /X, + 17X, +
1/Xy). Using this fact, we can write

IG(r,a)| =

(i) O

= (g nm n
GA()] = D|‘| : (I)DDH Z am (10)
C.(a) = (2m )_IMIZ (11)
ariip: A ¢ (l)]EIL () 50
DH |_| |_| &nm, Z "Geom (0

Calculatlng the logarithm of expression (11) and
using passages to the limit preceding formula (8), we
obtain

In(P(U|r,a)) = (-1.M/2)In(2m)

z IIn(T Gznm(f))df5+ JOn} +L(r,a),

m,=10

1[0
—52{
n=1
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where
L(r,a) = Z L, (r,a,); (12)
Lor, 8) = 3313 ~ Jar(@n) + Re(Jao(r, 3); (13)
oGy
‘]3n(an) - TJ'”[H—"‘ Z nmdf

Thus, the one-stage posmon-findi ng agorithm
should form maximum-likelihood estimates of radiator

coordinates f and amplitude factors a:

L(f,a) = max L(r,a).

rOR,alA

(14)

A possible implementation of the position-finding
system operating in accordance with formulas (12)—
(14) is considered below (see Section 6 and Fig. 14).

4. ACCURACY OF ESTIMATION
OF THE RADIATOR POSITION

The potential accuracy of estimation of radiator
coordinates r and vector a is determined by Cramér—
Rao matrix bound ®; equal to the matrix that is the
inverse of Fisher information matrix @®: ®- =

(1) (2
Dcr Pcr

((I)(Z)) (I)(3)

() A (1]
@', where ® = i 2
D, O,

Elements of Fisher matrix ® are determined asfol-
lows:

G = M[ﬁ L(r, a) )
0 or;or, [D
N M,-1M,-1 ¢b
o1’ ar
- _MO 9° L(r a)otly,

¢b
q):“bz_ ar dr or; ar

N

aL(r a) 0’ ka

+
b =T
Pt a'[ al’ 6!’ E& EI
2
L(r, a)n
F@ = wELlan g
n 0 or,0a, Dg‘h:;g
= _ [13 L(r, a)] L T
*jpm - Daa aa DU’ZFD! I)J _1!3!
r=Xg, r2=Yg, 3524, mn=1,N
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Differentiating expression (12) and calculating the
mean value at point (&, f ), we obtain

O M
2 0 Z im» Mo b
o1} ar DET:E O izm,
Epmblb’ Hb # Ap,
M, = Pp+t1, Iy = A+l pp Ay = L Mp—1;

P, = 2To(211f,)°
+00 Mb

Iqu(f)qbl (f)/[l*' z Obn, (f)}

ny=1
yoLan
ME e Dr=ry = O

Gy(f) U 5
GEnm(f)D

ad
x 1+ a,———— df
O

Gy(f)(anGy(f) + Genm, (1))
GEnm(f)

ZZI

n=1m, =19

s(f)
DZ Ginm(f)DD z

N a.G(f)

2Ty 3 Z Ieznmzf)semn(n

n=11,=1m,=1,

_Gs(f) o 0

i df
GEnm ( f )|:|

s(f)

s(f)
D n df;
z Gznm(f)DD z Ginm(f)D
[P°L(r, a) _
MDaaaa DET=E =0, nZm.

Thus, ®2} and, consequently, ®, are zero matrices.
Asaresult, @, = (@)™ and @, = (@)™
Matrix @, can be written as
N
= Z B, @7, B,
n=1

(15)
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where matrix B,, consists of elements

¢ ¢
B.(11, 1) = Tu:EaTu:
e or, 0Xg

= 21925, ~ 1} cos(yx(N)/R(r);

oz LT
n(Hn, 2) = ERrA

= 2], — 1}, cos(yXM/R(1);

5 3 = arﬁ:_arﬁ:
n(Hn, 3) = o, 97,

1 n n z 1T M 1
= E[%un_runcos(yn(r))]/Rn(r); Hn = 1, Mn_li

and matrix @7, contains elements ®7, (i, I, =

2

L(r, a)] S
V9 Ay =1, M —1.

Drdorto T "

Hence, the potential accuracy of coordinate estima-
tion for the one-stage method is described by the matrix

D, = O = (®)". (16)

The structure of matrix O, . which is the inverse

matrix for matrix (I)}in appearing in (15), is also of

interest. The reason isthat the phase-comparison direc-
tion-finding systems use, as arule, a two-stage bearing
measurement procedure. The first stage liesin measur-
ing phase delays that are recalcul ated to bearing angles
at the second stage (see, for example, [4]).

Let us consider the structure of matrix LI for the

case when signal-to-noise ratios are the same for al
RPs and are uniform within frequency band 24, =1, —f,.

In this case, gy (f) = qq (f) = o consequently,
Pmblb = Pnkjk = P’ 8 = an =& and GEnmn(f) =
Ge, (T) =%G;. In addition, we assume that the number

of RPs is the same for al NBSs, i.e,, M, = M, = M.
Then,

@7, =P(ME-1), (17)

where P = 16T2T, f5A,q2/(1 + Mq), matrices E and 1
have dimensions (M — 1) x (M - 1), and

1
q)Tqm = W(E+1) (18)
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Diagona elements of matrix ®;, can be repre-

sented as oy, = % . Inthis case,

2 _ 1+ Mg

0l = —=—*d (19)
8T, f2AMA?

In expression (14), we estimate not only informative
parameter r but also noninformative parameter a.
Implementing rule (14), we have a vexed problem of
the first approximation to amplitude vector a, because
we know nothing about its distribution law. Below, we
propose a heuristic method enabling formation of the
preliminary estimate of vector a. The potential mea-
surement accuracy for vector a is described by matrix

®%), which is the inverse matrix for matrix ®;.

Matrices (I)(Cgpl and @, are diagona. Taking into
account the above assumptions, we can write
o = 0’E,, (20)

where Ey istheN x N identity matrix and oi isthevari-

ance of the measurement error for amplitude factor a.
Therelative error is

Mg+1

Mq./T,20N

Ga —_
2= @y

5. COMPARATIVE ANALY SIS
OF ONE-STAGE AND DIRECTION-FINDING
METHODS FOR DETERMINING
THE RADIATOR POSITION

Let us consider the procedure for measuring the
radiator coordinates with an intermediate stage (mea-
surement of bearing angles). Below, we call this proce-
dure the direction-finding agorithm. In this algorithm,
the nth NBS determines estimates of azimuth and ele-

vation angles &, and ﬁn (Fig. 4) and signal amplitudes
a,, according to therule

Loy Py &) = max  Lo(dy Bo ay), (22)

a,0A,B,0B,a,0A

where

Lol B 8) = 5(I1n(30) = Ian(ar)

+ Re(jZn(an! an an))]} ;

designations J,(a,) and J;,(a,) were explained in com-

(23)
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Wave
front

Fig. 4.

ments to expressions (8) and (13), respectively; and

M,—1 M,

Re($an(0ln Brar)) = 5

Ih=1m,=1,+1
x cOS(21tf o(Th" (0, Br) =T (s Br)) + Prme,);

Mo=my—1,A,=1,—1, 13" (r) =0for A, =0.

Anmnnln

(24)

All components of expressions (22)—(24) were already
determined above except for Tﬁ” (a,, By (where y, =

1, M, —1). Inthis case, rfj” (0, By = (1/0)ry, , where

r

L. = %, cos(a,)cos(B,)

+ %y sin(a,) cos(B,) + %, sin(By).

The matrix describing the potential accuracy of
measuring azimuth and elevation anglesin the nth NBS
issimilar to that appearing in formula (15):

2 2
8; - Ona OHGB
n
2
O-nor[?)

= (3,07 98,7, @5
o
where elements of matrix *B,, are given by
5 1) < O
n(p-n! ) - 6_0(n

= %[—%ﬂnsin(dn) cos(B,) + Y, cos(a,) cos(B,)],

on

aTHn
Bn(p'n’ 2) = aB

~Y,, sin(a,)sin(B,) + £, sin(By)]-

= %[_%Encos(an)sin(ﬁn)

JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS Vol. 49

DUBROVIN, SOSULIN

In the direction-finding method, the radiator coor-
dinates are estimated according to the rule [5, expres-
sion (12)]

=1+ (B F8,) B F(0-06(ry).  (26)

Here, @ = |0y, By, ..., Oy, Bull: &5 = diag(¥,,) isthe 2N x
2N matrix consisting of N x N submatrices of which
nonzero onesonly (n,n)th 2 x 2 submatrices 3%, situated
on the diagonal,

aan aC(n a(Xn
B, = |87, . B B, = | e OVrOZr |
0B, 9B, 9B,
aXR aYR GZR
n=1N;

and vector r, denotes coordinates of the reference
point.
Asfollows from Fig. 3,
a, = arctan{(Yg — Yp)/(Xg — X)) },
Bn = arCSi n{ (ZR - Zn)/[(XR - Xn)2
+ (YR - Yn)2 + (ZR - Zn)z]]/2 } .

Thus,
;’;; = —sin(0,)/R; gsR = cos(a,)/Ry;
22; =0 g’i = —sin(B,) cos(a(,)/Ry;
35'; = —Sn(Bsin(an)/Ry ;’% = cos(B,)/ Ry,
where

g{n =[(Xg - Xn)2 +(Yr— Yn)2]1/2;
Rn = [(XR_ Xn)2 + (YR - Yn)2 + (ZR - Zn)2]1/2.

The accuracy of coordinates estimated with the
direction-finding method is determined by the formula
[5, expression (16)]

~— -1
Dy = (B3 B,) ", 27)
where ¥ = diag(F,," ). Whence it fol lows that
oM o
(I)df = DZ %:—n%;q);in%n%rrg '
= 0
Since B8, = B,, we find that
oM il
@, = ELZ B:(I)}LBFE = @, (28)
=1
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Thus, for large signal-to-noise ratios, when mea
surement errors are described by the Cramér—Rao
bound, accuracies of the radiator coordinates estimated
using the one-stage and two-stage (direction-finding)
methods are identical.

6. ANALY SIS OF POSITION-FINDING
ALGORITHMS IN THE PRESENCE
OF ABNORMAL MEASUREMENT ERRORS

The main differences between accuracies of the
radiator coordinates estimated with the one-stage and
two-stage methods arise when the signal level fals
below some threshold characterized by the appearance
of abnormal measurement errors. To demonstrate the
influence of this effect, we consider the structure of the
direction-finding device shown in Fig. 5. In this case,
we use the following simplifications. The narrow-base
subsystem contains four RPs, each comprising an
antenna with circular pattern in the azimuth plane and
an RS. Using formula (25), we can readily demonstrate
the well-known result (see, for example, [6, p. 221]):
the accuracy of measuring the azimuth and elevation
angles is directly proportional to the distance between
extreme antennas. At the same time, this configuration

147
y
RP,
®(0,d)
RP, RP;
X

RP,
0(0,-d)
Fig. 5.

powers are the same for all RPs and are uniform in the
frequency band 24 =f, —f;. In this case, Gy, (f) =
G, () = Gg, G(f) = Gg, and g, (F) = qy, (F)=q(g=
aG,/G;). As a result, expression (23) takes the form
(index n is omitted)

should satisfy the condition d < A/2, where A = ¢/f, is 0 A
the wavelength of the received signal. We will use the .04 1 *
relationship 2d = 0.8). In addition, we assume that the f(a,a) = 05q" +4) G; Z IUm(f)Um(f)df
direction-finding device and the radiator are situated in E m=1%,
the same plane. (29)
We choose the situation in which N = 1. It corre- [
sponds to the case when the system measures a single o . 4
bearing of the radiator or performs the first estimation —2TA¢In(1+4g) O+ (g +4) G; Ly(a),
of the position line in the flyby position-finding E
method. Then, Z,,, =0(m,=1,4 andn=1) and Z; =
0. Assumethat spectral densitiesof thesignal and noise  where
3 4 fa 2 f, 2%
La(@) =% IIUm(f)||U|(f)|Sin(¢m(f)—¢|(f))df} + {lem(f)llUKf)l cos(¢,(f) —¢,(f))df | O
l=1m=1+1 f f, E
fo . D
x COSE2T=((Xn = %) 005(01) + (Y = Y))Sin(@)) + Dpi5,
and
sz f,

Py = arctaHEIIUm(f)IIUu(f)Isin(d)m(f) —,(f))df, J’IUm(f)IIU|(f)ICOS(¢m(f) —¢,(f))df
)

O

isthe difference of pseudophases for signals at the mth
and Ith RPs.
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The estimate of azimuth a can be obtained in an
explicit form if we retain in (29) only two terms corre-
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sponding to two orthogonal pairs. RP,—RP; (I = 1 and
m = 3) and RP,—RP, (I = 2 and m = 4). Then,

a, = arctan(P,,, ;). (30)

Here, we took into account that ®,, = -®,, and
D3 =Py,

The derived expression is of interest because it
allowsarather ssimpleway for finding the radiator bear-
ing. The optimal (maximum likelihood) estimate can be
found using a more complicated method:

£.(a) = max¥y(a). (31)
aOA
Below, we analyze operation of heuristic (30) and
optimal (31) bearing measurement algorithms using
simulation on a persona computer.
The signal level is estimated using the rule

£,(8) = Tgféfz(a), (32)
4 f2
a=:
4

m=1fl

Estimates obtained from formulas (31) and (32) are
optimal estimates only for a single measurement (N =
1). When we measure coordinates (i.e., when N > 1),
these results can only be treated as auxiliary results
allowing us to simplify implementation of one-stage
algorithm (14), in which we should estimate not only
coordinate vector r but also noninformative parameter
a. Using expression (33), we can obtain a rather exact

approximation to a, (n = 1, N). Simulation revealed
that, implementing algorithm (14), one has no need for
additional refinement of the first approximation
obtained from formula (33).

Let us now obtain the particular form of expres-
sion (25) for the case under study. We should take into

account that ‘B, :—%Hsin(a) + cos(a), 2sin(a),

sin(a) — cos@)|, (I)ﬁn =
16T2T, 2 A:2/(1 + 4q). Then,

P4E — 1), and P =

~ _ 2 _ [d T T -
t¥n = 0y = [?P(‘l%n%n_%nl%n)}
34
(1+4q)c’ GY

 1281PT, 20, q°d?

Note that variance oﬁ is independent of a. Hence,
for the antenna system whose configuration is shownin
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where
: X
F(a) = o.5[(q-1+4)‘1eglz Ium(f)u:n(f)df
g m=1f
|:| 1
:
—2T A In(1+4q) O+ (G +4) " G L4(6).
0
O

Cadlculating the derivative of quantity £,(a), taking
into account that q = aG4/G;, and equating the result to
zero, we obtain an explicit expression for the estimate
of the signal amplitude (a):

U
(33)

O

Fig. 5, the potential value of the bearing measurement
accuracy isindependent of the direction of arrival of the
received signal .

Figure 6 depicts the bearing measurement error (o)
as afunction of the signal-to-noise ratio (g). Curve / is
the theoretical potential error calculated from for-
mula (34); curves 2 and 3 are bearing measurement
errors obtained using the personal-computer simulation
of measurements carried out according to rules (31) and
(30), respectively. Initial datafor calculations were the
following: f, = 100 MHz (accordingly, A =1.5m); d =
0.6 m; 2A¢=32kHz; T, = 1 ms, and Gs= G; = 1 pW/Hz.
The variance of the measured radiator bearing was esti-

mated using the rule var, = J\%lZﬁll(dn—at)z,

where N is the number of measurements (tests) and
a, isthe true bearing angle.

Note that the primary goa of this smulation is to
additionally check the validity of approximations and
assumptions madein the course of derivation of expres-
sion (34) describing the potential measurement accu-
racy for asingle bearing aswell asto carry out the com-
parative analysis of explicit form (30) of the bearing
estimation algorithm and optimal algorithm (31). Sim-
ulation results obtained for q < 0 are no longer
described by bound (34); they have only qualitative
character because, in this domain, the so-called abnor-
mal measurement errors begin to play their role.
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Fig. 6.

Increasing the number of measurementsin thisdomain,
we cannot obtain more stable results. Moreover, in the
presence of abnormal errors, sample variance var, no
longer carriesinformation on the quality of operation of
a particular algorithm. A more objective picture can be
obtained if the calculation of variance var, is replaced
with the calculation of the probability of abnormal
measurement error.

As was mentioned above, the estimated amplitude
obtained from rule (33) isagood initial approximation
of components of vector a when we seek the maximum
of LF (12). Let usfind the excessin the potential accu-
racy of the measured amplitude over the accuracy of mea
surements carried out in accordance with formula (33).

, .0 .
Figure 7 presents ratio Ea calculated as a function of

signal-to-noiseratio g. The solid line correspondsto the
theoretical error calculated using formula (21) and
points mark relative errors of the amplitude estimated
according to rule (33). The results were obtained using
the numerical simulation on apersonal computer. Asis
seen from the plot, errors in the estimated signal level
are described well by the Cramér—Rao bound, includ-
ing the case of small signal-to-noise ratios.

The purpose of these simulations is to additionally
check the validity of assumptions made in the course of
derivation of expressions related to the direction-find-
ing algorithm, to reveal the threshold for the normal
operation of this algorithm, and to find possibilities of
reducing the time required for seeking the LF maxi-
mum in the one-stage algorithm that may arise due to
the use of the first approximation of amplitude vector a
based on rule (33).

Let us now analyze the one-stage algorithm itself
and compare its efficiency with that of the direction-
finding algorithm. In order to measure coordinates, we
should fulfill the condition N > 1. In this case, potential
accuracies of coordinate measurements performed
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- 0.4
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Fig. 7.

using the one-stage and direction-finding algorithms
are identical. Their values can be determined as fol-
lows:

2 2
o, O _
Oy =@y =| V| =0By ()
Xy Gy
where
. 2
B, B sin o
BTN = ! 2 Bl = Z R ni
B, B; n=1 n
sina,cosa, N costa
—_ n
Z“ B = Zl R,
n=

L et us perform acomparative analysis by simulating
operation of the one-stage and direction-finding algo-
rithmsin thefollowing system for determining the radi-

Pabn
~0.6

1 0.5
0.4

-0.3

-0.2

]
20 ¢,dB

-10 -5 0 5 10 15
Fig. 8.
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”//////

Fig. 10.

ator coordinates. Let us have a carrier moving in space
for sometime. An NBS whose antenna system is shown
in Fig. 5 isinstalled onboard the carrier. We consider
the coordinate determination problem for the radiator
situated on a plane. If the carrier is an aircraft, the dis-
tance from the radiator to the carrier is assumed to be
substantialy larger than the flight altitude (i.e., the
flight altitude is neglected). Positions at which the mea-
surements are carried out are marked by points on the
Ox axesin Figs. 9-13.
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The initial parameters were the following: the radi-
ator coordinates are Xz = 100 km and Yy = 100 km;
coordinates of five sites at which the measurements

were carried out (in kilometers) arer = ||r], ..., ri||=

110.0, 50.0, 100.0, 150.0, 200.0||; the area containing the
radiator is400 x 400 km; the center signal frequency is
100 MHz; the intermediate frequency is chosen below
the halved signal sampling frequency and equals
20 MHz; the number of time-domain samples is
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ﬂ
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131072 within observation interval T, = 1 ms; the sig-
nal sampling frequency is 131072 kHz; and signal
bandwidth is 32 kHz.

Qualities of operation of the one-stage and direc-
tion-finding agorithms are compared using probabili-
ties of abnormal estimation of the radiator coordinates,
for which we use the probability that absolute value of

error JA;+ A7 (B= X —Xg and A, = Y — Y, where
X and ¥ and Xy and Yg are measured and true radia-
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tor's coordinates, respectively) exceeds 3,0 + o5,

where o, and o, are diagonal elements of matrix @,
in formula (35).

Figure 8 depicts probability of abnormal estimate
P, asafunction of signal-to-noise ratio g for the one-
stage (curve 1) and two-stage (curve 2) algorithms. One
can see that, for the chosen conditions and small values
of the signal-to-noise ratio, the synthesized one-stage
agorithm offers an advantage over the two-stage
(direction-finding) one by about 6-8 dB.
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Fig. 13.
RS | | ADC
RP,
Internal data bus
[ ] [ ] ]:[
[ ] [ ]
L4 L Specia-purpose | T
computer —>
T_{ RS | | ADC
RP),
NBS
Fig. 14.

This advantage lies in the following. Rule (26) for
estimating coordinates from measured bearings was
derived under the assumption that bearing measure-
ment errors have normal distribution. This assumption
is valid for large signal-to-noise ratios. If the signa
level fals, the distribution law of the bearing measure-
ment errors increasingly deviates from the normal law.
Consequently, algorithm (26) ceasesto be optimal. The
loss in the accuracy of determined radiator coordinates
becomes the most substantial upon the appearance of
abnormal errorsin values of measured bearings.

The cause of the advantage of the one-stage algo-
rithm over the direction-finding one is additionally
explained in Figs. 9-13. These figures depict lines of
equal values of the LFs of the one-stage algorithm plot-
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ted asfunctions of coordinates x and y for different val-
ues of the signal-to-noise ratio (concentric lines around
the small circle with a cross marking the radiator posi-
tion measured with the one-stage method) and bearing
lines formed by the direction-finding algorithm (rays
going out from measuring sites). Crosses in the figures
mark lines of equal values of the LF for which these
values are presented in the figure. The triangle with the
letter R marksthetrue position of theradiator. Each fig-
ure showsthe pattern of asingle observation of theradi-
ator from five aforementioned sites. Values of LFs for
different x and y were calculated using formula (12).
Components of vector a (required in formula (12))
were determined from formula (33). For each site, the
bearing was estimated in accordance with formula(31).
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Analyzing Figs. 9-13, we can notice that, at signal-to-
noise ratios less than 0 dB, the direction-finding system
operates increasingly worse because abnormal errors
may arbitrarily “turn” the measured direction to the
radiator. Therefore, attempts to improve the quality of
measured coordinates by using acquisition of the bear-
ing information and well-known algorithms similar to
algorithm (26) cannot give the desired result. We can
propose severa procedures that select (ignore) abnor-
mal bearing measurements. In this case, the reference
method for operation of a position-finding systemisthe
one-stage method for measuring the radiator coordi-
nates and heuristic procedures derived from some rea-
soning should be compared with the one-stage algo-
rithm in order to estimate the loss in the coordinate
measurement accuracy.

As to the practical implementation, the differences
between the one-stage and two-stage (direction-find-
ing) systems mainly lie in the software. As a possible
design version of the aforementioned systems, Fig. 14
shows the general block diagram of a coordinate meter
installed onboard a carrier moving in space. The meter
contains M reception points, M analog-to-digital con-
verters (ADCs), a specia-purpose computer, and
peripheral devices required for operation of the above
components (memory modules, internal data bus, etc.).
This structure of the measuring system alows the
implementation of both one-stage algorithm (14) and
two-stage agorithm described by relationships (22)
and (26). The implementation will be ensured by the
special-purpose computer, which can run the code of
the chosen measurement algorithm.

7. CONCLUSIONS

Using the maximum likelihood method, we
obtained the one-stage algorithm for estimation of the
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radiator position by a passive system consisting of nar-
row-base subsystems. The proposed one-stage posi-
tion-finding system can be implemented on the basi s of
one carrier moving in space. Expenses of the hardware
of the two-stage (direction-finding) and the one-stage
systems are almost equal.

Analysis of the one-stage and two-stage (direction-
finding) algorithms revealed that, in both cases, accura-
ciesof coordinate measurementsareidentical if thesig-
nal-to-noise ratio exceeds some threshold level ensur-
ing normal operation of the direction-finding ago-
rithm. However, determining coordinates of weak
signal sources (when powers of received signals are
comparable to noise), it is expedient to use the one-
stage algorithm offering a lower value of the signal-to-
noise threshold.
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