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INTRODUCTION

A wide-base passive system for the one-stage esti-
mation of the emitter position is described in [1]. This
system consists of receiving points (RP) separated in
space and a central processing point (CPP) (Fig. 1). A
useful signal model is selected as follows:
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Here, the unknown parameters are 
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. In [1],
a one-stage algorithm was synthesized under the
assumption that the value of parameter 

 

a

 

n

 

 is known.
From the viewpoint of practical implementation, this
simplification of the problem can be treated as if there
is some external procedure for estimating the value of

 

a

 

n

 

. In this case, the following questions arise: How will
the complete algorithm of estimating coordinates look
in conditions that amplitudes of the received signal are
unknown? How will the Cramer–Rao lower bound be
modified when new unknown parameters are added?
How will the system implementing the proposed algo-
rithm look in view of the capabilities of existing com-
puting facilities?

In addition, the initial simplification of the problem
by the artificial exclusion of one or other parameter
leaves a feeling of incompleteness. In this respect, the
solutions obtained in [2] appear more complete (ana-
logues of the systems considered in [1, 2] are range-dif-
ference and direction-finding systems). The purpose of
this work is to approach the existing solution obtained
in [1] in the real electromagnetic environment.
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1. THE ONE-STAGE ESTIMATION ALGORITHM 
AND THE CRAMER–RAO LOWER BOUND

Paper [1] presents a one-stage algorithm for estimat-
ing coordinates of an emitter. If an estimation problem
with unknown amplitudes is included into the general
problem, then, upon deriving expressions (9)–(12)
in [1] and passing from the discrete to continuous time,
we can write the logarithm of the normalizing factor as

Taking into account the symmetry of the spectra
appearing under the integral sign with respect to the
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Abstract

 

—An optimal algorithm of the one-stage estimation of a wide-base passive system’s emitter position
in the case when the received signal level is unknown is presented. A Cramer–Rao matrix lower bound that
describes the potential accuracy of estimation of both the informative parameters of the emitter coordinates and
the noninformative ones (amplitudes of received signals) is derived. A simplified method for implementation
of the optimal algorithm that allows measurements for a practice time acceptable for available computing facil-
ities is proposed. The accuracy of the measurements made in accordance with this simplified algorithm is stud-
ied. It is shown that the proposed solutions allow implementation of the measurement process with an accuracy
described by the Cramer–Rao lower bound.
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lowing transformation of the conditional probability
density will take place:
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 is the signal-to-noise ratio in the 
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th channel.
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The measurement algorithm given by expression (15)
in [1] can be written as

(2)

The possible implementation of the position-finding
system operating in accordance with algorithm (2) is
considered below.

Since the number of estimated parameters has
increased, the number of dimensions of Cramer–Rao
matrix lower bound FCR (and, respectively, of Fisher’s
information matrix F) have also increased. In the
described case, these matrices can be written as

(3)
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(4)

and

To implement procedure (2), the coordinate com-
puter should have the information on parameters of the
signal and the noise. With the advent of one or another
heuristic algorithm that permits measurements of some
parameters, the following questions arise: how well
does the proposed algorithm operate and to what degree
do measurement errors of this parameter influence the
coordinate estimation accuracy? The expressions
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derived above provide answers to these questions in a
general form. At the same time, it is expedient to con-
sider a particular example of implementation of the
coordinate measurement algorithm that allows one to
see the influence of one measurement (the signal ampli-
tudes) on another (the emitter coordinates).

2. IMPLEMENTATION 
OF THE OPTIMAL ALGORITHM

In [1], an algorithm for estimating emitter coordi-
nates was synthesized and analyzed on the assumption
that the power spectral densities of the signal and the
noise are known. The measurement of these parameters
was not included in the circle of problems solved in [1].
This study concretely renders the problem of estimat-
ing additional parameters of the received signals used
in the implementation of the coordinate measurement
algorithm.

The basic problem that must be solved is the
problem of implementing a rather complicated proce-
dure (2). The estimation algorithm is complicated
mainly owing to an increase in the number of dimen-
sions of the space in which we seek the maximum of
function L(r, h, a). Below we propose a method allow-
ing estimation of the emitter coordinates in accordance
with (2).

To find the maximum of the likelihood function
(LF), the following method is the most efficient. Ini-
tially, the primary estimation of a is performed. For this
purpose, some simplifications are made. At the begin-
ning, it is assumed that the nth RP operates indepen-
dently. As a result, the likelihood function ceases to
depend on r and h. In this case, we can write

Having taken a derivative of L(an), we obtain

In the next step, which allows simplification of the
estimation procedure for the initial approximation
to  an , the power spectral densities depending on fre-
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quency f are replaced by rectangular functions with
width 2∆F (see Fig. 2). In this case, Gs( f )  Gs and
Gξ( f )  Gξ . If the derivative of the LF is equated to

zero and solutions for which an = 0 and an = ∞ are
excluded, we obtain

(5)

Substituting the values obtained from (4) into (2),
we scan spaces R and H with the goal of estimating
vectors r and h by finding the maximum of the LF given
in (1).

Now, let us determine how acceptable the first
approximation obtained from (5) is.

In accordance with this rule, the amplitude-mea-
surement error can be described by using (4) and
assuming that N = 1. In this case, the Cramer–Rao
matrix lower bound degenerates into a scalar quantity

equal to . Here,

(6)

where q = aGs/Gξ is the signal-to-noise ratio.
Let us consider how much rule (6) loses in the accu-

racy of the amplitude measurement with respect to the
optimal procedure (2). To clarify the analysis, we con-
sider the example with N = 2. We then obtain for (3)
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this case, ratio /  is indicated in the upper part of

each cell of the table and ratio /  is presented in
the lower part of the cell. As can be seen, when the sig-
nal level increases, the optimal and quasi-optimal algo-
rithms tend to be equivalent from the viewpoint of the
signal-amplitude measurement accuracy.

Let us now directly consider the coordinate-mea-
surement procedure by using the above measurement-
simplification method. Figure 3 shows the position-
finding system containing four RPs.

The emitter coordinates are measured as follows.
Initially, vector ah is measured using heuristic proce-
dure (5). Then, a coarse scan along coordinates x and y
of the space in which the emitter can be located is per-
formed with some step (in our case, 2 km). In this case,
at each scan point rsc, the LF maximum is calculated
using a numerical method (in our case, this is the sim-
plex method [3]):

(8)

where vector  is the noninformative parameter. To
explain the operation of the intermediate procedure (8),
we can cite, as an example, the case of N = 2. Here, the

σa1
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total LF is a slow process filled with a high-frequency
oscillation (its plot resembles that of an amplitude-
modulated signal). The purpose of the complete algo-
rithm is to jump over the tops of the harmonics. During
the scan, it is difficult to jump to the tops. Hence, at
each new step, intermediate procedure (8) needs to be
available to push out the sought-for value of the LF to
any nearest top. The measured coordinate values are
obtained as if they are discrete, but, since it was
assumed in the problem formulated in [1] that 2∆F � f0 ,
then it is almost impossible to notice this discreteness.

In accordance with (8), we can now plot dependence
LΦ(r). Here subscript Φ signifies the phase self-tuning
in the case of selecting a new point in space ç of the

likelihood function; i.e., LΦ(r) = L(r, h, a) when h = 
and a = ah.

Figure 4 shows an example of the LF plotted for dis-
crete values of vector r – rsc. The input data are as fol-
lows. The observation time is 1.3 ms, the power spectral
densities of the signal and noise are uniform in a
40-kHz frequency band, signal-to-noise ratio Gs/Gξ = 1,
and signal amplitude vector a = (1, 1, 1, 1). For this
case, the LF maximum is 87.9. As can be seen from the
figure, the global maximum is near true coordinate val-
ues (10, 40).
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After the coarse LF value and, respectively, approx-
imate estimation of the emitter location are found, the
coordinates are additionally determined by searching
for the maximum of function LΦ(r) using a numerical
(simplex) method.

The proposed algorithm of searching for an estima-
tion of the emitter coordinates is based on some heuris-
tic procedures that allow a substantial reduction of the
measurement time. In order to understand, at least in
the first approximation, how successful the proposed
solutions are, it is expedient to analyze the obtained
results by performing a simulation on a personal com-
puter.

Figure 5 shows a graph of MSDs versus the signal-
to-noise ratio. Curves 1 and 2 are, respectively, depen-
dencies of σx and σy on glg, where glg = 20  isglin( )log

the value characterizing the general signal level (a =
glin · (1, 1, 1, 1)), and σx and σy are the theoretical MSDs
along axes x and y, respectively, calculated in accor-
dance with expression (22) in [1] which, for the 2D
space, can be written as

In the figure, circles and squares mark estimated MSD

values sx =  and sy =

, respectively, where � is

the number of tests and  and  are the estimated
coordinates of the nth measurement.

As follows from the figure, for the chosen initial
data, the proposed measurement algorithm is quite sta-
ble and its error is well described by the Cramer–Rao
lower bound.

CONCLUSIONS

A one-stage algorithm of estimating coordinates by
a wide-base passive system for an unknown signal level
is proposed. In addition to [1], this study yields a solu-
tion that depends less on a priori knowledge of param-
eters of the received signal. As a parameter whose value
is virtually impossible to foresee, the signal level at the
receiving point was selected. In spite of an increase in
the number of dimensions, a quite operable measure-
ment algorithm was obtained in this work. In this case,
its operating accuracy is close to the potential accuracy
described by the Cramer–Rao lower bound.
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